Angiotensin AT1 receptor subtype as a cardiac target of aldosterone: role in aldosterone-salt-induced fibrosis.
نویسندگان
چکیده
This study tests the hypothesis that aldosterone induces cardiac fibrosis through an increase of cardiac angiotensin II (Ang II) AT1 receptor levels, thereby potentiating the fibrotic effect of Ang II by determining the effects of spironolactone and losartan on cardiac fibrosis, AT1 density, and gene expression in aldosterone-salt-treated rats. Fibrosis was quantified by slot blots of collagen I and III mRNA levels and videomorphometry of Sirius red-stained collagen. AT1 receptor density was determined by (125I-Sar1-Ile8)-Ang II competition binding, and AT1 mRNA levels were analyzed by quantitative reverse transcriptase polymerase chain reaction. One month of aldosterone-salt treatment induced a decrease in plasma Ang II and an increase in blood pressure, left ventricular hypertrophy, and ventricular fibrosis. Spironolactone (20 mg/kg per day) and losartan spironolactone (10 mg/kg per day) had no effect on the first 3 parameters. Losartan was as effective as spironolactone in preventing ventricular collagen mRNA increase and fibrosis. Ventricular density of AT1 receptors increased 2-fold and was accompanied by a 3-fold increase in the corresponding mRNA in aldosterone-salt compared with sham-operated rats. Both spironolactone and losartan prevented the elevation of ventricular AT1 density and that of right ventricular AT1 mRNA levels. These results demonstrate that the mechanism by which aldosterone-salt induces cardiac fibrosis involves Ang II acting through AT1 receptors. They also suggest that the cardiac AT1 receptor is a target for aldosterone.
منابع مشابه
Critical role of apoptosis signal-regulating kinase 1 in aldosterone/salt-induced cardiac inflammation and fibrosis.
The molecular mechanism underlying aldosterone/salt-induced cardiovascular injury remains to be defined. This work was undertaken to determine the role of apoptosis signal-regulating kinase 1 (ASK1) in the mechanism underlying aldosterone-induced cardiac injury in vivo. We compared the in vivo effects of 4 weeks of aldosterone/salt treatment on wild-type and ASK1-deficient mice. Aldosterone inf...
متن کاملActivation of cardiac aldosterone production in rat myocardial infarction: effect of angiotensin II receptor blockade and role in cardiac fibrosis.
BACKGROUND This study analyzed the regulation and the role of the cardiac steroidogenic system in myocardial infarction (MI). METHODS AND RESULTS Seven days after MI, rats were randomized to untreated infarcted group or spironolactone- (20 and 80 mg x kg-1 x d-1), losartan- (8 mg x kg-1 x d-1), spironolactone plus losartan-, and L-NAME- (5 mg x kg-1 x d-1) treated infarcted groups for 25 days...
متن کاملExcessively low salt diet damages the heart through activation of cardiac (pro) renin receptor, renin-angiotensin-aldosterone, and sympatho-adrenal systems in spontaneously hypertensive rats
OBJECTIVE A high salt intake causes hypertension and leads to cardiovascular disease. Therefore, a low salt diet is now recommended to prevent hypertension and cardiovascular disease. However, it is still unknown whether an excessively low salt diet is beneficial or harmful for the heart. METHODS Wistar Kyoto rats (WKYs) and spontaneously hypertensive rats (SHRs) received normal salt chow (0....
متن کاملHigh-salt intake induces cardiomyocyte hypertrophy in rats in response to local angiotensin II type 1 receptor activation.
Many studies have shown that risk factors that are independent of blood pressure (BP) can contribute to the development of cardiac hypertrophy (CH). Among these factors, high-salt (HS) intake was prominent. Although some studies have attempted to elucidate the role of salt in the development of this disease, the mechanisms by which salt acts are not yet fully understood. Thus, the aim of this s...
متن کاملRegulation of angiotensin II receptor expression by nitric oxide in rat adrenal gland.
We recently reported that administration of Nomega-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide (NO) production, activates the vascular and cardiac renin-angiotensin systems and causes vascular thickening and myocardial hypertrophy in rats with perivascular and myocardial fibrosis. It has been reported that aldosterone may contribute to the development of cardiac fibrosi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Hypertension
دوره 33 4 شماره
صفحات -
تاریخ انتشار 1999